Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells.

نویسندگان

  • Tanmay P Lele
  • Jay Pendse
  • Sanjay Kumar
  • Matthew Salanga
  • John Karavitis
  • Donald E Ingber
چکیده

The formation of focal adhesions that mediate alterations of cell shape and movement is controlled by a mechanochemical mechanism in which cytoskeletal tensional forces drive changes in molecular assembly; however, little is known about the molecular biophysical basis of this response. Here, we describe a method to measure the unbinding rate constant k(OFF) of individual GFP-labeled focal adhesion molecules in living cells by modifying the fluorescence recovery after photobleaching (FRAP) technique and combining it with mathematical modeling. Using this method, we show that decreasing cellular traction forces on focal adhesions by three different techniques--chemical inhibition of cytoskeletal tension generation, laser incision of an associated actin stress fiber, or use of compliant extracellular matrices--increases the k(OFF) of the focal adhesion protein zyxin. In contrast, the k(OFF) of another adhesion protein, vinculin, remains unchanged after tension dissipation. Mathematical models also demonstrate that these force-dependent increases in zyxin's k(OFF) that occur over seconds are sufficient to quantitatively predict large-scale focal adhesion disassembly that occurs physiologically over many minutes. These findings demonstrate that the molecular binding kinetics of some, but not all, focal adhesion proteins are sensitive to mechanical force, and suggest that force-dependent changes in this biophysical parameter may govern the supramolecular events that underlie focal adhesion remodeling in living cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner.

We examined the effects of mechanical forces on actin polymerization at focal adhesions (FAs). Actin polymerization at FAs was assessed by introducing fluorescence-labeled actin molecules into permeabilized fibroblasts cultured on fibronectin. When cell contractility was inhibited by the myosin-II inhibitor blebbistatin, actin polymerization at FAs was diminished, whereas alpha(5)beta(1) integr...

متن کامل

Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement

Organs and tissues adapt to acute or chronic mechanical stress by remodeling their actin cytoskeletons. Cells that are stimulated by cyclic stretch or shear stress in vitro undergo bimodal cytoskeletal responses that include rapid reinforcement and gradual reorientation of actin stress fibers; however, the mechanism by which cells respond to mechanical cues has been obscure. We report that the ...

متن کامل

Dev108217 1..12

We describe the identification of zyxin as a regulator of synapse maintenance in mechanosensory neurons in C. elegans. zyx-1 mutants lacked PLM mechanosensory synapses as adult animals. However, most PLM synapses initially formed during development but were subsequently lost as the animals developed. Vertebrate zyxin regulates cytoskeletal responses to mechanical stress in culture. Our work pro...

متن کامل

Dev108217 3922..3933

We describe the identification of zyxin as a regulator of synapse maintenance in mechanosensory neurons in C. elegans. zyx-1 mutants lacked PLM mechanosensory synapses as adult animals. However, most PLM synapses initially formed during development but were subsequently lost as the animals developed. Vertebrate zyxin regulates cytoskeletal responses to mechanical stress in culture. Our work pro...

متن کامل

Nascent Focal Adhesions Are Responsible for the Generation of Strong Propulsive Forces in Migrating Fibroblasts

Fibroblast migration involves complex mechanical interactions with the underlying substrate. Although tight substrate contact at focal adhesions has been studied for decades, the role of focal adhesions in force transduction remains unclear. To address this question, we have mapped traction stress generated by fibroblasts expressing green fluorescent protein (GFP)-zyxin. Surprisingly, the overa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cellular physiology

دوره 207 1  شماره 

صفحات  -

تاریخ انتشار 2006